Select your region: UK & Ireland   /   Nordic

mIRage IR Microscope

Photothermal Spectroscopy Corp

mIRage – Photothermal Spectroscopy Corp

Overcoming the greatest limitations of IR spectroscopy

The mIRage is sub-micron IR spectroscopy and imaging system. O-PTIR is a proprietary technique that breaks the diffraction limit of infrared. It bridges the gap between conventional IR micro-spectroscopy and nanoscale IR spectroscopy.

  • Sub-micron IR spectroscopy and imaging
  • Non-contact – fast and easy to use
  • Transmission quality IR spectra in reflection mode
  • No need for thin sections

mIRage overcomes the greatest issues in IR microscopy:

  • Sub-micron spatial resolution
  • Measure thick samples in reflection mode
  • None of the dispersive artifacts and contact limitations of ATR

mIRage brochure Contact us

Photothermal Spectroscopy Corp Logo

mIRage IR Microscope
PhotoThermal Mirage IR Microscope


  • Polymers and composites
  • Multi-layer films – more info
  • Failure analysis and defects
  • Micro-electronics contamination
  • Geology
  • Life science – more info
  • Pharmaceuticals
  • Forensics


  • Sub-micron spatial resolution
  • Overcomes the previous limitations of IR
  • Non-contact technique
  • Little or no sample preparation (no need for thin sections)
  • Transmission FTIR quality spectra in reflection mode
  • Combine with Raman spectroscopy – more info

O-PTIR Spectroscopy

Optical Photothermal Infrared spectroscopy is a fast and easy to use non-contact optical technique, which overcomes the IR diffraction limit.

How does it work?

A tunable, pulsed mid-IR laser is focused on the sample’s surface. This causes photothermal effects, which are then measured using a visible probe laser.

Advantages of O-PTIR

  • Collect data quickly and easily.
  • Non-contact based technique.
  • Spectra are comparable to FTIR, without the dispersive artifacts of ATR.
  • Samples do not need to be thin, so there’s little or no sample preparation, speeding up the process.

How O-PTIR Works

Watch a recorded webinar

How O-PTIR overcomes the two main problems of IR spectroscopy:

– Poor spatial resolution
– Time-consuming sample preparation

Dr Curtis Marcott of Light Light Solutions and Craig Prater of Photothermal present the benefits of O-PTIR.

Watch now…

O-PTIR Example

Bone sample: Reflection mode IR spectra and hyper-spectral imaging. 25 x 25 µm array, 500-nm spacing. Left: Single wavelength image (1058 cm-1) from Hyperspectral data set
Right: Single-pixel spectrum. 1s collection time

Example Applications

The mIRage provides valuable information for a wide range of applications; if your area of work is not mentioned here, please get in touch.

Polymer Multilayer Film

Click to enlarge

Multilayer Film

Block face of a multi-layer polymer film sample with seven layers. HYPERspectra images(20 x 85 μm size) were taken at a rate of 1 sec/spectra, with 1 μm spacing.

The spectra shows the corresponding images of absorption of carbonyl, amide II and CH stretching bands of the film components, respectively.

The blue sections of the spectra are the locations of the line arrays.

Data courtesy of G. Meyers, M. Rickard Dow Chemical Company

PTIR: Polymer film

Click to enlarge

Polymer Film Defects

The optical image shows a defect in a 240 µm thick double layer film. The markers show the location of the measurements.

Bottom: mIRage IR spectra collected from defect-free area. The peaks are recognisable as isotactic polypropylene (998cm-1).

Top: mIRage IR spectra from the defect. The isotactic polypropylene bands are not as visible or consistent in this region, suggesting a loss of crystallinity.

PTIR Life Science Applications

Life Science

a) HYPERspectral array location of mouse bone. HYPERspectral images and taken at b) 1047 cm-1 and c) 1660 cm-1 showing mineral and protein distribution, respectively. d) Corresponding spectra from the inner bone, showing a higher absorption for phosphate.

Courtesy of Prof. Nancy Pleshko, Dr. Mugdha Padalkar and Jessica M. Falcon, Temple University

More about sub-micron IR in life science

O-PTIR in Alzheimer’s Disease research

Drug Polymer Blend Dispersion

Click to enlarge


HYPERspectral images and corresponding spectra taken at:

(a) 1760 cm-1 showing PLGA distribution
(b)1666 cm-1 showing dexamethasone
(c) Optical view of the PLGA/dexamethasone blend. A 40 x 40 μm image is selected for simultaneous HYPERspectral measurements.

Excedrine tablet

Click to enlarge

Optical image of an Excedrin tablet. The markers on the image show where the individual spectra were collected from within the tablet.

The unsmoothed IR spectra show the distribution of various components.

Forensics fabric sample

Click to enlarge


Optical image of a fabric sample. The marker points to where ~0.5 µm IR spectra were acquired using mIRage.

Strong absorbance at 1732 cm-1 indicates a carbonyl stretch of polyester.

Simultaneous Sub-Micron IR and Raman Microscopy – A World First

Submicron infrared can be combined with Raman for simultaneous IR and Raman on the same spot, with the same resolution. This is a world first, that opens up a whole new range of research possibilities.

More about IR and Raman

IR and Raman Spectroscopy

How it Works

Watch this 2 minute video for a quick overview of how simultaneous infrared and Raman microscopy works:

Recorded Webinar

This webinar from Photothermal Spectroscopy Corp provides an introduction to O-PTIR and its benefits in a range of fields including defect and failure analysis, polymers, materials, life science, pharmaceuticals and forensics:

Back to Top