mIRage – Photothermal Spectroscopy Corp
Overcoming the greatest limitations of IR spectroscopy
The mIRage is sub-micron IR spectroscopy and imaging system. O-PTIR is a proprietary technique that breaks the diffraction limit of infrared. It bridges the gap between conventional IR micro-spectroscopy and nanoscale IR spectroscopy.
- Sub-micron IR spectroscopy and imaging
- Non-contact – fast and easy to use
- Transmission quality IR spectra in reflection mode
- No need for thin sections
mIRage overcomes the greatest issues in IR microscopy:
- Sub-micron spatial resolution
- Measure thick samples in reflection mode
- None of the dispersive artifacts and contact limitations of ATR


O-PTIR Spectroscopy
Optical Photothermal Infrared spectroscopy is a fast and easy to use non-contact optical technique, which overcomes the IR diffraction limit.
How does it work?
A tunable, pulsed mid-IR laser is focused on the sample’s surface. This causes photothermal effects, which are then measured using a visible probe laser.
Advantages of O-PTIR
- Collect data quickly and easily.
- Non-contact based technique.
- Spectra are comparable to FTIR, without the dispersive artifacts of ATR.
- Samples do not need to be thin, so there’s little or no sample preparation, speeding up the process.
Watch a recorded webinar
How O-PTIR overcomes the two main problems of IR spectroscopy:
– Poor spatial resolution
– Time-consuming sample preparation
Dr Curtis Marcott of Light Light Solutions and Craig Prater of Photothermal present the benefits of O-PTIR.

Bone sample: Reflection mode IR spectra and hyper-spectral imaging. 25 x 25 µm array, 500-nm spacing. Left: Single wavelength image (1058 cm-1) from Hyperspectral data set
Right: Single-pixel spectrum. 1s collection time
Example Applications
The mIRage provides valuable information for a wide range of applications; if your area of work is not mentioned here, please get in touch.
Multilayer Film
Block face of a multi-layer polymer film sample with seven layers. HYPERspectra images(20 x 85 μm size) were taken at a rate of 1 sec/spectra, with 1 μm spacing.
The spectra shows the corresponding images of absorption of carbonyl, amide II and CH stretching bands of the film components, respectively.
The blue sections of the spectra are the locations of the line arrays.
Data courtesy of G. Meyers, M. Rickard Dow Chemical Company
Polymer Film Defects
The optical image shows a defect in a 240 µm thick double layer film. The markers show the location of the measurements.
Bottom: mIRage IR spectra collected from defect-free area. The peaks are recognisable as isotactic polypropylene (998cm-1).
Top: mIRage IR spectra from the defect. The isotactic polypropylene bands are not as visible or consistent in this region, suggesting a loss of crystallinity.
Life Science
a) HYPERspectral array location of mouse bone. HYPERspectral images and taken at b) 1047 cm-1 and c) 1660 cm-1 showing mineral and protein distribution, respectively. d) Corresponding spectra from the inner bone, showing a higher absorption for phosphate.
Courtesy of Prof. Nancy Pleshko, Dr. Mugdha Padalkar and Jessica M. Falcon, Temple University
Pharmaceuticals
HYPERspectral images and corresponding spectra taken at:
(a) 1760 cm-1 showing PLGA distribution
(b)1666 cm-1 showing dexamethasone
(c) Optical view of the PLGA/dexamethasone blend. A 40 x 40 μm image is selected for simultaneous HYPERspectral measurements.
Optical image of an Excedrin tablet. The markers on the image show where the individual spectra were collected from within the tablet.
The unsmoothed IR spectra show the distribution of various components.
Forensics
Optical image of a fabric sample. The marker points to where ~0.5 µm IR spectra were acquired using mIRage.
Strong absorbance at 1732 cm-1 indicates a carbonyl stretch of polyester.
Simultaneous Sub-Micron IR and Raman Microscopy – A World First
Submicron infrared can be combined with Raman for simultaneous IR and Raman on the same spot, with the same resolution. This is a world first, that opens up a whole new range of research possibilities.
How it Works
Watch this 2 minute video for a quick overview of how simultaneous infrared and Raman microscopy works:
Recorded Webinar
This webinar from Photothermal Spectroscopy Corp provides an introduction to O-PTIR and its benefits in a range of fields including defect and failure analysis, polymers, materials, life science, pharmaceuticals and forensics:
Comments are closed.